143 research outputs found

    Efficient GPU Cloud architectures for outsourcing high-performance processing to the Cloud

    Get PDF
    The world is becoming increasingly dependant in computing intensive applications. The appearance of new paradigms, such as Internet of Things (IoT), and advances in technologies such as Computer Vision (CV) and Artificial Intelligence (AI) are creating a demand for high-performance applications. In this regard, Graphics Processing Units (GPUs) have the ability to provide better performance by allowing a high degree of data parallelism. These devices are also beneficial in specialized fields of manufacturing industry such as CAD/CAM. For all these applications, there is a recent tendency to offload these computations to the Cloud, using a computing offloading Cloud architecture. However, the use of GPUs in the Cloud presents some inefficiencies, where GPU virtualization is still not fully resolved, as our research on what main Cloud providers currently offer in terms of GPU Cloud instances shows. To address these problems, this paper first makes a review of current GPU technologies and programming techniques that increase concurrency, to then propose a Cloud computing outsourcing architecture to make more efficient use of these devices in the Cloud.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the Spanish Research Agency (AEI) under project HPC4Industry PID2020-120213RB-I00

    Footwear bio-modelling: An industrial approach

    Get PDF
    There is a growing need within the footwear sector to customise the design of the last from which a specific footwear style is to be produced. This customisation is necessary for user comfort and health reasons, as the user needs to wear a suitable shoe. For this purpose, a relationship must be established between the user foot and the last with which the style will be made; up until now, no model has existed that integrates both elements. On the one hand, traditional customised footwear manufacturing techniques are based on purely artisanal procedures which make the process arduous and complex; on the other hand, geometric models proposed by different authors present the impossibility of implementing them in an industrial environment with limited resources for the acquisition of morphometric and structural data for the foot, apart from the fact that they do not prove to be sufficiently accurate given the non-similarity of the foot and last. In this paper, two interrelated geometric models are defined, the first, a bio-deformable foot model and the second, a deformable last model. The experiments completed show the goodness of the model, with it obtaining satisfactory results in terms of comfort, efficiency and precision, which make it viable for use in the sector

    A new methodological approach for shoe sole design and validation

    Get PDF
    Shoe soles are extremely complex to design and manufacture due to their organically shaped but technically precise nature and their manufacturing constraints. Consequently, there is a need for the increased design process flexibility offered by the use of specific CAD methodologies and techniques, to facilitate the work of expert designers and permit effective construction of the three-dimensional elements comprising the complete structure. Recent advances in additive manufacturing systems have extended the possibilities of shoe sole design. These systems can be used to create the final mould and to incorporate dynamic elements that are of particular value in sports footwear. In this article, we present a new methodology for the design and validation of shoe soles. The methodology assists designers in the design concept process and in transfer of the design to manufacturing. The model incorporates both a structural and a functional approach. To this end, a set of specific tools have been developed that can be used to quantify design quality. For example, the model calculates the coefficient of friction or slip resistance, necessary to comply with international standards concerning safety footwear.The financial support of this study comes from IVACE (Instituto Valenciano de Competitividad Empresarial) project: DIHUCA—complex tread designs for footwear soles (IMDEEA/2015/4)

    A new boundary-based morphological model

    Get PDF
    Mathematical morphology addresses the problem of describing shapes in an n-dimensional space using the concepts of set theory. A series of standardized morphological operations are defined, and they are applied to the shapes to transform them using another shape called the structuring element. In an industrial environment, the process of manufacturing a piece is based on the manipulation of a primitive object via contact with a tool that transforms the object progressively to obtain the desired design. The analogy with the morphological operation of erosion is obvious. Nevertheless, few references about the relation between the morphological operations and the process of design and manufacturing can be found. The non-deterministic nature of classic mathematical morphology makes it very difficult to adapt their basic operations to the dynamics of concepts such as the ordered trajectory. A new geometric model is presented, inspired by the classic morphological paradigm, which can define objects and apply morphological operations that transform these objects. The model specializes in classic morphological operations, providing them with the determinism inherent in dynamic processes that require an order of application, as is the case for designing and manufacturing objects in professional computer-aided design and manufacturing (CAD/CAM) environments. The operators are boundary-based so that only the points in the frontier are handled. As a consequence, the process is more efficient and more suitable for use in CAD/CAM systems

    Deterministic mathematical morphology for CAD/CAM

    Get PDF
    Purpose – The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological operations. The determinism is needed to model dynamic processes that require an order of application, as is the case for designing and manufacturing objects in CAD/CAM environments. Design/methodology/approach – The basic trajectory-based operation is the basis of the proposed morphological specialization. This operation allows the definition of morphological operators that obtain sequentially ordered sets of points from the boundary of the target objects, inexistent determinism in the classical morphological paradigm. From this basic operation, the complete set of morphological operators is redefined, incorporating the concept of boundary and determinism: trajectory-based erosion and dilation, and other morphological filtering operations. Findings – This new morphological framework allows the definition of complex three-dimensional objects, providing arithmetical support to generating machining trajectories, one of the most complex problems currently occurring in CAD/CAM. Originality/value – The model proposes the integration of the processes of design and manufacture, so that it avoids the problems of accuracy and integrity that present other classic geometric models that divide these processes in two phases. Furthermore, the morphological operative is based on points sets, so the geometric data structures and the operations are intrinsically simple and efficient. Another important value that no excessive computational resources are needed, because only the points in the boundary are processed

    A morphological approach to the design of complex objects

    Get PDF
    The surface-trajectory model gives a solution to some of the problems presented by the general geometric models where the design of an object is separated from its manufacture. In fact, in this model, the internal representation of objects is made up of machining trajectories. As the display systems usually need triangles to represent the objects, a process of triangulation is needed to visualize them. In other words, a secondary surface model is needed to display the objects. The following is a geometric model that, maintaining the philosophy of the surface-trajectory model, encapsulates the calculation of the machining process from the formal framework that provides the set theory and the mathematical morphology. The model addresses the process of designing objects by assimilation of a machining process by giving solutions to the design of complex objects and an arithmetic to support the generation of trajectories of manufacturing. The design process is similar to the craft work of sculptors designing their pieces by hand with their tools. It also gives a direct solution to the problems of the trajectory generation since they are already defined at the design phase. The model is generic and robust as there are no special cases or complex objects in which the model does not provide a correct solution. It also naturally incorporates the realistic display of the machined objects in a quickly and accurately way

    Selective SWIFT-R. A Flexible Software-Based Technique for Soft Error Mitigation in Low-Cost Embedded Systems

    Get PDF
    Commercial off-the-shelf microprocessors are the core of low-cost embedded systems due to their programmability and cost-effectiveness. Recent advances in electronic technologies have allowed remarkable improvements in their performance. However, they have also made microprocessors more susceptible to transient faults induced by radiation. These non-destructive events (soft errors), may cause a microprocessor to produce a wrong computation result or lose control of a system with catastrophic consequences. Therefore, soft error mitigation has become a compulsory requirement for an increasing number of applications, which operate from the space to the ground level. In this context, this paper uses the concept of selective hardening, which is aimed to design reduced-overhead and flexible mitigation techniques. Following this concept, a novel flexible version of the software-based fault recovery technique known as SWIFT-R is proposed. Our approach makes possible to select different registers subsets from the microprocessor register file to be protected on software. Thus, design space is enriched with a wide spectrum of new partially protected versions, which offer more flexibility to designers. This permits to find the best trade-offs between performance, code size, and fault coverage. Three case studies have been developed to show the applicability and flexibility of the proposal.This work was funded by the Ministry of Science and Innovation in Spain with the project ‘RENASER+: Integral Analysis of Digital Circuits and Systems for Aerospace Applications’ (TEC2010-22095-C03-01)

    Augmented and Virtual Reality techniques for footwear

    Get PDF
    The use of 3D imaging techniques has been early adopted in the footwear industry. In particular, 3D imaging could be used to aid commerce and improve the quality and sales of shoes. Footwear customization is an added value aimed not only to improve product quality, but also consumer comfort. Moreover, customisation implies a new business model that avoids the competition of mass production coming from new manufacturers settled mainly in Asian countries. However, footwear customisation implies a significant effort at different levels. In manufacturing, rapid and virtual prototyping is required; indeed the prototype is intended to become the final product. The whole design procedure must be validated using exclusively virtual techniques to ensure the feasibility of this process, since physical prototypes should be avoided. With regard to commerce, it would be desirable for the consumer to choose any model of shoes from a large 3D database and be able to try them on looking at a magic mirror. This would probably reduce costs and increase sales, since shops would not require storing every shoe model and the process of trying several models on would be easier and faster for the consumer. In this paper, new advances in 3D techniques coming from experience in cinema, TV and games are successfully applied to footwear. Firstly, the characteristics of a high-quality stereoscopic vision system for footwear are presented. Secondly, a system for the interaction with virtual footwear models based on 3D gloves is detailed. Finally, an augmented reality system (magic mirror) is presented, which is implemented with low-cost computational elements that allow a hypothetical customer to check in real time the goodness of a given virtual footwear model from an aesthetical point of view

    Shoe last machining using virtual digitising

    Get PDF
    Shoe lasts are the moulds used in the footwear industries in order to mount the shoe. Most of the machines used in the sector to make lasts are simply mechanical copiers. CAD/CAM systems have just arrived to the shoe last market but its accuracy and efficiency is not better than traditional machines, for this reason new systems have difficulty to implant. Presented in the paper there is a tool path generation algorithm that takes the advantages of traditional copier systems that do not fulfil the CNC standards. The tool path is computed from a “virtually digitised” model of the last surface. The algorithm is then analysed in terms of computing cost and accuracy and refined by applying a series of optimisations. Some computer architectures are proposed in order to reduce the computation time. The proposed algorithm has been successfully implemented in a commercial CAD/CAM system specialised in shoe last making. Finally, some illustrative examples are shown

    A new surface joining technique for the design of shoe lasts

    Get PDF
    The footwear industry is a traditional craft sector, where technological advances are difficult to implement owing to the complexity of the processes being carried out, and the level of precision demanded by most of them. The shoe last joining operation is one clear example, where two halves from different lasts are put together, following a specifically traditional process, to create a new one. Existing surface joining techniques analysed in this paper are not well adapted to shoe last design and production processes, which makes their implementation in the industry difficult. This paper presents an alternative surface joining technique, inspired by the traditional work of lastmakers. This way, lastmakers will be able to easily adapt to the new tool and make the most out of their know-how. The technique is based on the use of curve networks that are created on the surfaces to be joined, instead of using discrete data. Finally, a series of joining tests are presented, in which real lasts were successfully joined using a commercial last design software. The method has shown to be valid, efficient, and feasible within the sector
    corecore